6.AP.1 Algorithms and Programming

The student will apply computational thinking to identify patterns, make
use of decomposition to break down problems or processes into sub-
components, and design algorithms. (a) Identify patterns and repeated
steps in an algorithm, problem, or process. (b) Decompose an algorithm,
problem, or process into sub-components. (c) Abstract relevant
information to identify essential details. (d) Design algorithms using
abstraction to accomplish a task or express a computational process.

Understanding the Standard

‘Computational thinking” involves re-imagining problems, tasks, or ideas in
such a way that they are compatible with computing technologies. For
example, a student might write down a sequence of instructions (an
algorithm) and notice that there's a lot of repetition (practicing pattern
recognition). They could isolate the part of the instructions that repeats
(decomposition), give that section a name (abstraction), and simplify the
instructions by referring to the name of the section rather than writing the
same sequence of instructions over and over again. Students practice
these computational thinking skills when they write code that includes
procedures.

Term Definition
pattern Finding instances of repetition, especially in the
recognition context of algorithms designed around a task

decomposition Breaking down a complex process into simple steps

algorithm A sequence of instructions

abstraction Grouping related things based on important

attributes those things share

Prerequisite Knowledge

In order to develop the skills described in this standard, students must be
able to write simple algorithms (sequences of instructions) with or without
a programming language. These algorithms, when written with code,
should include conditional logic and variables (see lower grade levels for
details).

Summary of a Lesson

Code

Integration Opportunities

Visual Arts 6.5b Design algorithms
to show how to care for materials in
the art room.

Health 6.3.z \X¥/ork collaboratively to
identify an environmental health or
safety issue and develop a plan to
address this issue. Use abstraction
to determine and delegate
important tasks efficiently.

Math 6.PFA.4a Design an algorithm
to create an efficient daily schedule
by decomposing activities into time
blocks and identifying patterns of
time use, and then represent time
constraints with a linear inequality in
one variable on a number line to
ensure all activities fit within their
available time.

For an “unplugged” activity, have students write down instructions for navigating a task or problem (e.g.,
navigating a maze, making lunch, weeding a garden, cleaning a room, drawing a shape). Make sure you choose a
task or problem that will involve repeated steps. Have students write down instructions for completing the task
(create an algorithm) and identify which sections repeat (pattern recognition). Then, have them give a “name" to
the repeated section (decomposition, abstraction) and re-write their instructions referencing the named
sequence, replacing the repetitive instructions with something like “perform the [namel instructions again”.

For a “plugged” activity, teach students how to organize code into procedures, functions, or methods (depending
on your chosen programming language). There are many ways to use procedures depending on the context, so
reference examples in curricula or in the programming environment for details about how to implement these

kinds of programs.

This work is licensed under a CC-BY-SA-NC 4.0 International License

Attribute to “CodeVA 2024”



http://creativecommons.org/licenses/by-nc-sa/4.0/

