6.AP.3 Algorithms and Programming

The student will use the iterative design process to create, test, and debug
programs using a block-based or text-based programming language. (a)
Create and test programs that use multiple conditional control structures.
(b) Incorporate existing code, media, or libraries into original programs. (c)
Trace and predict outcomes of programs. (d) Analyze and describe
program results to assess validity of outcomes. (e) Analyze the outcomes
of programs to identify logic and syntax errors. (f) Incorporate feedback
from others to refine programs. (g) Revise and improve programs to
resolve errors and produce desired outcomes.

Understanding the Standard

This standard outlines the basic coding skills students should use as they
address other standards in this strand. As students write code, they will
make mistakes or write instructions that lead to unexpected outcomes.
When this happens, they will need to use their debugging skills to correct
the code and make the computer do what they intended it to do. It's pretty
difficult for students to make any progress coding without addressing this
standard, especially given that 6.AP.2 requires them to use conditionals.

Term Definition
conditional See 6.AP.2
library A built-in set of commands to use in a program

code tracing Reading a program line-by-line to predict what the

computer will do when it executes the program

logic error An error in human reasoning, leading to a program

that doesn't work as intended

syntax error An error in spelling, creating a program that the

computer doesn't know how to execute

debugging Identifying and addressing errors in code

Prerequisite Knowledge

The only element of this standard that requires prerequisite knowledge is
6.AP.3a. Before using conditional control structures, students will need to
understand variables and relational expressions.

Summary of a Lesson

Code

Integration Opportunities

Math 6.MG.4 d Develop a tool that
allows users to input side lengths
and angles of two polygons, uses
multiple conditional control
structures to assess congruence,
and refine the program based on
test results to ensure it accurately
identifies congruent and
noncongruent shapes.

History Skills USII e f,i Create, test,
and debug programs to compare
and contrast, explain cause-effect
relationships, and demonstrate
understanding of content.

Science 6.2b Create, test, and
debug programs using nested
conditionals to identify planets in
the solar system including sizes,
order, distance from the sun, and
other characteristics.

English 6.W.1a Use a story
mapping tool to outline various
decisions a character could make
in a story. Trace the possible
outcomes to assess their validity
then revise and improve the outline
to solve issues.

Any lesson that involves coding should also address this standard by incorporating activities that prompt
students to read and predict the results of code. Have students read a program written in a familiar programming
language and ask them to respond to questions like “what does this program cause the computer to do?" and
‘what mistakes are in this program?”. You can even have students write their own code examples and trade
programs, allowing students to practice their code tracing skills on a wide variety of examples. When students
test their programs, ask them questions like “did the program do what you expected? Why or why not?" and
‘what errors did the computer find in the code?". Incorporating libraries, etc. is easy—almost all programming
language involve using libraries, so refer to your chosen programming tool for details on this topic.

This work is licensed under a CC-BY-SA-NC 4.0 International License

Attribute to “CodeVA 2024”



http://creativecommons.org/licenses/by-nc-sa/4.0/

